277 research outputs found

    From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration

    Full text link
    In this paper, we propose a novel approach to the rank minimization problem, termed rank residual constraint (RRC) model. Different from existing low-rank based approaches, such as the well-known nuclear norm minimization (NNM) and the weighted nuclear norm minimization (WNNM), which estimate the underlying low-rank matrix directly from the corrupted observations, we progressively approximate the underlying low-rank matrix via minimizing the rank residual. Through integrating the image nonlocal self-similarity (NSS) prior with the proposed RRC model, we apply it to image restoration tasks, including image denoising and image compression artifacts reduction. Towards this end, we first obtain a good reference of the original image groups by using the image NSS prior, and then the rank residual of the image groups between this reference and the degraded image is minimized to achieve a better estimate to the desired image. In this manner, both the reference and the estimated image are updated gradually and jointly in each iteration. Based on the group-based sparse representation model, we further provide a theoretical analysis on the feasibility of the proposed RRC model. Experimental results demonstrate that the proposed RRC model outperforms many state-of-the-art schemes in both the objective and perceptual quality

    Generalizable Synthetic Image Detection via Language-guided Contrastive Learning

    Full text link
    The heightened realism of AI-generated images can be attributed to the rapid development of synthetic models, including generative adversarial networks (GANs) and diffusion models (DMs). The malevolent use of synthetic images, such as the dissemination of fake news or the creation of fake profiles, however, raises significant concerns regarding the authenticity of images. Though many forensic algorithms have been developed for detecting synthetic images, their performance, especially the generalization capability, is still far from being adequate to cope with the increasing number of synthetic models. In this work, we propose a simple yet very effective synthetic image detection method via a language-guided contrastive learning and a new formulation of the detection problem. We first augment the training images with carefully-designed textual labels, enabling us to use a joint image-text contrastive learning for the forensic feature extraction. In addition, we formulate the synthetic image detection as an identification problem, which is vastly different from the traditional classification-based approaches. It is shown that our proposed LanguAge-guided SynThEsis Detection (LASTED) model achieves much improved generalizability to unseen image generation models and delivers promising performance that far exceeds state-of-the-art competitors by +22.66% accuracy and +15.24% AUC. The code is available at https://github.com/HighwayWu/LASTED

    Rethinking Image Forgery Detection via Contrastive Learning and Unsupervised Clustering

    Full text link
    Image forgery detection aims to detect and locate forged regions in an image. Most existing forgery detection algorithms formulate classification problems to classify pixels into forged or pristine. However, the definition of forged and pristine pixels is only relative within one single image, e.g., a forged region in image A is actually a pristine one in its source image B (splicing forgery). Such a relative definition has been severely overlooked by existing methods, which unnecessarily mix forged (pristine) regions across different images into the same category. To resolve this dilemma, we propose the FOrensic ContrAstive cLustering (FOCAL) method, a novel, simple yet very effective paradigm based on contrastive learning and unsupervised clustering for the image forgery detection. Specifically, FOCAL 1) utilizes pixel-level contrastive learning to supervise the high-level forensic feature extraction in an image-by-image manner, explicitly reflecting the above relative definition; 2) employs an on-the-fly unsupervised clustering algorithm (instead of a trained one) to cluster the learned features into forged/pristine categories, further suppressing the cross-image influence from training data; and 3) allows to further boost the detection performance via simple feature-level concatenation without the need of retraining. Extensive experimental results over six public testing datasets demonstrate that our proposed FOCAL significantly outperforms the state-of-the-art competing algorithms by big margins: +24.3% on Coverage, +18.6% on Columbia, +17.5% on FF++, +14.2% on MISD, +13.5% on CASIA and +10.3% on NIST in terms of IoU. The paradigm of FOCAL could bring fresh insights and serve as a novel benchmark for the image forgery detection task. The code is available at https://github.com/HighwayWu/FOCAL

    Recoverable Privacy-Preserving Image Classification through Noise-like Adversarial Examples

    Full text link
    With the increasing prevalence of cloud computing platforms, ensuring data privacy during the cloud-based image related services such as classification has become crucial. In this study, we propose a novel privacypreserving image classification scheme that enables the direct application of classifiers trained in the plaintext domain to classify encrypted images, without the need of retraining a dedicated classifier. Moreover, encrypted images can be decrypted back into their original form with high fidelity (recoverable) using a secret key. Specifically, our proposed scheme involves utilizing a feature extractor and an encoder to mask the plaintext image through a newly designed Noise-like Adversarial Example (NAE). Such an NAE not only introduces a noise-like visual appearance to the encrypted image but also compels the target classifier to predict the ciphertext as the same label as the original plaintext image. At the decoding phase, we adopt a Symmetric Residual Learning (SRL) framework for restoring the plaintext image with minimal degradation. Extensive experiments demonstrate that 1) the classification accuracy of the classifier trained in the plaintext domain remains the same in both the ciphertext and plaintext domains; 2) the encrypted images can be recovered into their original form with an average PSNR of up to 51+ dB for the SVHN dataset and 48+ dB for the VGGFace2 dataset; 3) our system exhibits satisfactory generalization capability on the encryption, decryption and classification tasks across datasets that are different from the training one; and 4) a high-level of security is achieved against three potential threat models. The code is available at https://github.com/csjunjun/RIC.git.Comment: 23 pages, 9 figure

    Detecting Adversarial Examples from Sensitivity Inconsistency of Spatial-Transform Domain

    Full text link
    Deep neural networks (DNNs) have been shown to be vulnerable against adversarial examples (AEs), which are maliciously designed to cause dramatic model output errors. In this work, we reveal that normal examples (NEs) are insensitive to the fluctuations occurring at the highly-curved region of the decision boundary, while AEs typically designed over one single domain (mostly spatial domain) exhibit exorbitant sensitivity on such fluctuations. This phenomenon motivates us to design another classifier (called dual classifier) with transformed decision boundary, which can be collaboratively used with the original classifier (called primal classifier) to detect AEs, by virtue of the sensitivity inconsistency. When comparing with the state-of-the-art algorithms based on Local Intrinsic Dimensionality (LID), Mahalanobis Distance (MD), and Feature Squeezing (FS), our proposed Sensitivity Inconsistency Detector (SID) achieves improved AE detection performance and superior generalization capabilities, especially in the challenging cases where the adversarial perturbation levels are small. Intensive experimental results on ResNet and VGG validate the superiority of the proposed SID
    • …
    corecore